
The IDLflex mapping specification language

(Version 1.1)

Hans Reiser
University of Erlangen-Nürnberg

September 5, 2001

1 Introduction

The purpose of this document is to provide a complete manual for the development
of IDLflex mapping programs. IDLflex is a generic, flexible IDL compiler developed
at the University of Erlangen-Nürnberg. It is able to generate arbitrary code from
CORBA IDL. The mapping from IDL to a specific programming language is defined
in an XML based mapping language. This language is design to be simple and easy
to read, and is not adequate to express rather complex operations, which form only a
minor part of the code generation process. Thus, the mapping developer may provide
some extra functionality by a Java based Utility class.

The following section specifies the syntax and semantics of the XML tags (statements)
used by the mapping programming language. Section 3 describes the interface and
the functionality of the Utility class. Section 4 explains the internal representation
of IDL definitions.

2 XML mapping program

The XML tags can be grouped into several categories, as shown by Table 2. A
full listing of the corresponding DTD (document type definition) can be found in
appendix B. The syntax and semantics of all XML tags is explained in detail in the
next sections.

At any time there is an implicit reference to an IDL object associated with the
execution of each XML statement. This implicit reference is called currentIDL. All

1

IDLflex

COMPONENT

CALL

Structuring the XML mapping program

FILE

SBOX
Handling code output streams

GET Dynamic creation of text

IF

SWITCH

CASE

Conditional expressions

ITERATE Iterating over content of the IDL definitions

PLUGIN

ERROR
Other

Figure 1: XML tags of the IDLflex mapping language

operations that need informations from IDL definitions obtain their data from the
definition addressed by this reference. In most XML statements it is possible to
explicitly change the currentIDL reference via an attribute “OBJ”.

2.1 Structuring the XML mapping program

<IDLflex ROOT="..." UTILITY="...">
...

</IDLflex>

This is the master element of any XML mapping program. Each program must contain
exactly one IDLflex element. There are two attributes: ROOT specifies the root component.
This component is the first component to be executed with currentIDL initialized to
the root container of the IDL object tree. Thus it corresponds to the main method of
a traditional C program. UTILITY specifies which Utility class the IDL compiler shall use.
This class is written in Java.

<COMPONENT NAME="...">
...

</COMPONENT>

The whole XML mapping program can be structured into so-called components. Each
component can be “executed” multiple times, i.e. they can be used like subroutines in

2

traditional programming languages. Thus they enable writing easy-to-read programs and
also provide the possibility to reuse components multiple times.

<CALL NAME="..." [OBJ="..."]/>

The CALL tag is used to execute another component as subroutine. The NAME attribute
specifies the component’s name. The optional OBJ attribute changes currentIDL while
executing the called component. After returning from the subroutine currentIDL is
restored to its previous value.

2.2 Handling output

To create output it is necessary to open an output stream. There are two statements for
opening such a stream: FILE and SBOX. Everything between the start tag und the end tag
of FILE resp. SBOX is used to create the output. This content may consist of plain text,
which is directly used as output, and of other XML statements, which also may produce
output.

In the case of nested FILE or SBOX statements, the inner-most output stream is used as the
active stream, and the outer streams are temporarily suspended.

<FILE SPEC="..." [OBJ="..."]> ...(content to be written)... </FILE>

The FILE statement is used to create an file output stream. The translation of the argument
SPEC to a file name is done by the Utility class. See section 3 for more details.

<SBOX NAME="..." [OBJ="..."]> ...(content to be written)... </SBOX>

This statement creates a special case of an output stream: The data is written to an
internal buffer (save-box), which can later be used to insert it in various places in other
output streams.

Both variants allow changing currentIDL. In the case of FILE, the new reference is passed
to the Utility class.

2.3 Dynamic creation of text

<GET T="..." [OBJ="..."]/>

The GET statement is used to create text dynamically. The attribute T controls the text
generation. IDLflex defines some standard labels for this attribute as shown below. The
set of these core labels is usually extended by the destination language specific Utility class.

3

module A {

interface C {

// ...

}

}

Figure 2: IDL definition example

No restrictions are made on the name space for such extension labels. The Utility class
may even overload some of the standard labels. Note that GET is an empty XML tag.

Currently predefined labels for the T attribute:

<GET T="DEF:xxx"/>

Returns the value yyy, which was defined by -Dxxx=yyy on the IDLflex command line.

<GET T="IDL:xxx"/>

Retrieves a value directly from the IDL information referenced by currentIDL. Most IDL
elements allow retrieving IDL:id (the IDL-ID), IDL:name (the name of the IDL element)
and IDL:fullname (the fully scoped name of the IDL) element. More details can be found
in chapter 4, which explains the internal representation of IDL definitions and lists the
labels for all IDL informations.

Example:
Assume the IDL definition shown in figure 2 and let currentIDL point to the definition
of interface C. Then IDL:name produces the interface name C, IDL:fullname produces the
fully scoped name :A:C and IDL:id produces IDL:A/C:1.0.

<GET T="SBOX:xxx"/>

Inserts the content of the save-box with the specified name at the current position of the
output stream. See <SBOX> for further details on save-boxes.

<GET T="LIST:Count:xxx"/>

This statement retrieves the number of elements in currentIDL’s member list with the
name xxx.

<GET T="LOOP:Count"/>

4

This statement retrieves the number of elements in the member list of the inner-most
iteration loop. This is equivalent to changing the IDL reference to the appropriate element
and then getting LIST:Count:xxx.

<GET T="LOOP:Index"/>

This get label retrieves the current iteration counter of the inner-most iteration loop, written
in decimal notation. Iterations are counted starting from 0.

The additional labels that are defined in the Utility class of our Java mapping are shown
in appendix A.

2.4 Conditional expressions

IDLflex supports two types of conditional expression:

<IF [OBJ="..."] COND="..."> ...conditionally created text... </IF>

<SWITCH [OBJ="..."]>
<CASE [OBJ="..."] COND="..."> ... </COND>
<CASE [OBJ="..."] COND="..."> ... </COND>
[<DEFAULT> ... </DEFAULT>]

</SWITCH>

The simple IF statement evaluates the condition and only if this evaluation yields true it
executes its content. The SWITCH statement allows choosing one out of many branches.
Only the first CASE with a true condition is executed. If no true condition is found, the
(optional) DEFAULT branch is used. Again, the OBJ attribute may be used to change the
currentIDL reference. The new reference is used while evaluating the condition and while
executing the body content. When using OBJ in a SWITCH statement, the new reference is
used for all cases. In the case of using OBJ in a CASE statement, it referese only to this
statement and its body.

Similar to GET there is a predefined set of condition labels, which can be extended via the
Utility class. Currently the following predefined labels are supported:

<IF COND="DEF:xxx"> ... </IF>

This condition is true if xxx was defined on IDLflex ’s command line (-Dxxx).

<IF COND="LOOP:First"> ... </IF>
<IF COND="LOOP:Last"> ... </IF>

5

These conditions may only be used inside the scope of an ITERATE statement. They yield
true if the iteration is currently working on the first resp. last element of its iteration
container.

<IF COND="HAVE:xxx"> ... </IF>

This condition yields true if the current IDL definition contains a non-empty container
named xxx. See the section Iterating and the chapter on the internal representation of IDL
definitions on more info about IDL containers.

<IF COND="IDL:xxx"> ... </IF>

This condition evaluates a property of an IDL definition. The supported labels xxx depend
on the type of the current IDL definition referenced by currentIDL. See the chapter 4 for
further details.

<IF COND="TYPE:xxx"> ... </IF>
<IF TYPE="xxx"> ... </IF>

These two statements are equivalent in their semantic. The second form is defined as a
short cut for the first one for historical reasons. The statements verify the type of the
IDL definition referenced by currentIDL. The set of existing types and their labels is also
described in section 4

It is possible to derive more conditions from these core labels: Prepending a “!” to a
label negates the condition. Concatenating several core or negated conditions with the “|”
operator creates a new condition that is true as soon as one of its components is true.

For example, consider these two statements:

<IF COND="!LOOP:First"> ... </IF>
<IF TYPE="ArrayObj|SequenceObj"> ... </IF>

The first expresseion is true, if the current iteration is not the first iteration. The second
statement is true, if the current IDL reference points to an array or sequence definition.

2.5 Iterating

<ITERATE [OBJ="..."] NAME="..."> ... </ITERATE>

6

class Utility {

String getName(String label);

boolean getAttribute(String label);

}

Figure 3: Public interface of the Utility class

The ITERATE statement allows the iteration over content lists of IDL definitions. Depending
on the IDL definition, different content lists are possible, like the parameters of a method,
the exceptions thrown by a method, the member elements of a struct, etc. Each content
list can be referenced by a name. The names of content lists are shown in chapter 4, which
explains the internal representation of IDL definitions.

ITERATE is the only statement which implicitly changes the currentIDL reference: For each
member of the content list, the reference is set to this member and the body of the ITERATE
statement is executed.

3 The Utility class

The Utility class may be used to provide additional, target language specific functionality.
As described above the XML mapping language interacts with the Utility class when the
GET, IF/SWITCH, FILE and PLUGIN statements are executed.

Figure 3 shows the public interface of the Utility class. Any language specific Utility class
must be derived from this superclass.

The GET statement causes IDLflex to call the getName method of the Utility class. The
user provided subclass should handle all of its own labels, and pass all other labels to the
superclass.

Similarly, the IF and CASE statements use the method getAttribute to make a decision.
The handling of negation and composition by the or operator are handled by the compiler,
and getAttribute gets called for each individual condition fragment. Again, the user-
provided utility class shall process all its own condition labels and pass all others to the
super class.

The constructor of the Utility class may register plugin objects with the compiler in its
constructor. These may then be instantiated and used as described above with the PLUGIN
statement. All instances of an plugin module have an ID which can be used to reference it.

4 IDL Objects

... Internal representation of IDL constructs ... (TODO)

7

A The Java Utility class

Our Java Utility class defines following labels for the GET statement:

<GET T="JAVA:PkgName"/>
<GET T="JAVA:PkgDecl"/>

These two statements retrieve the Java package name where the file that is currently being
created is located. The second variant produces a complete package declaration (package
...;). It suppresses its output, it the current file is not inside the scope of any package.

<GET T="JAVA:ConstVal"/>
<GET T="JAVA:DiscrVal"/>

The first statement produces the value of a constant declaration, formatted in correct
syntax for a Java constant. It only may be used with currentIDL pointing to a constant
declaration.

The second statement can be called with currentIDL referencing a UnionObj or a Union-
MemberObj. For UnionObj, it retrieves the value used to represent the default branch.
For UnionMemberObj, it retrieves the discriminator of this union member. Each value is
represented numerically.

<GET T="JAVA:TYPE:name"/>
<GET T="JAVA:TYPE:decl"/>
<GET T="JAVA:TYPE:holder"/>
<GET T="JAVA:TYPE:helper"/>

<GET T="JAVA:TYPE:stub"/>
<GET T="JAVA:TYPE:skeleton"/>
<GET T="JAVA:TYPE:operationif"/>
<GET T="JAVA:TYPE:tie"/>

<GET T="JAVA:TYPE:basicidl"/>
<GET T="JAVA:TYPE:newarray"/>

This set of labels is used to create Java names. The first statement uses IDL:name to
produces a valid Java name. In this process, it does all transformations for name collision
avoidance with Java reservered words as defined in the CORBA standard. All other
statements use additional transformations of this names. First, they conditionally produce
fully scoped names, when it is necessary, i.e. if the file that currently is being created
contains a different Java package than the referenced currentIDL object belongs to. Then,
they perform further changes to create names for Holder and Helper class. For currentIDL
pointing to an interface, you can produce the name of Stub, Skeleton, Operation Interface
and Tie classes.

8

B XML DTD definition

<!ENTITY % all "#PCDATA|CALL|FILE|SBOX|GET|IF|SWITCH|ITERATE|PLUGIN|ERROR">

<!ENTITY lt "&#60;">
<!ENTITY gt ">">
<!ENTITY amp "&#38;">
<!ENTITY apos "'">
<!ENTITY quot """>

<!ELEMENT IDLFlex (COMPONENT|TABLE|MAPTABLE)*>
<!ATTLIST IDLFlex ROOT CDATA #REQUIRED

UTILITY CDATA #REQUIRED
WRITER CDATA #IMPLIED>

<!ELEMENT IMPORT EMPTY>
<!ATTLIST IMPORT NAME CDATA #REQUIRED>

<!ELEMENT TABLE (#PCDATA|ENTRY)*>
<!ATTLIST TABLE NAME CDATA #REQUIRED SEPARATOR CDATA #IMPLIED>
<!ELEMENT ENTRY EMPTY>
<!ATTLIST ENTRY TAG CDATA #REQUIRED>

<!ELEMENT MAPTABLE (#PCDATA|MAP)*>
<!ATTLIST MAPTABLE NAME CDATA #REQUIRED>
<!ELEMENT MAP EMPTY>
<!ATTLIST MAP TAG CDATA #REQUIRED

MAP CDATA #REQUIRED>

<!ELEMENT COMPONENT (%all;)*>
<!ATTLIST COMPONENT

NAME CDATA #IMPLIED>

<!ELEMENT CALL EMPTY>
<!ATTLIST CALL

NAME CDATA #REQUIRED
OBJ CDATA #IMPLIED>

<!ELEMENT FILE (%all;)*>
<!ATTLIST FILE

SPEC CDATA #REQUIRED
OBJ CDATA #IMPLIED>

9

<!ELEMENT SBOX (%all;)*>
<!ATTLIST SBOX

NAME CDATA #IMPLIED
DELETE CDATA #IMPLIED
OBJ CDATA #IMPLIED>

<!ELEMENT GET EMPTY>
<!ATTLIST GET

OBJ CDATA #IMPLIED
T CDATA #REQUIRED>

<!ELEMENT IF (%all;)*>
<!ATTLIST IF

OBJ CDATA #IMPLIED
TYPE CDATA #IMPLIED
COND CDATA #IMPLIED>

<!ELEMENT SWITCH (CASE|DEFAULT)*>
<!ATTLIST SWITCH

OBJ CDATA #IMPLIED>

<!ELEMENT CASE (%all;)*>
<!ATTLIST CASE

OBJ CDATA #IMPLIED
TYPE CDATA #IMPLIED
COND CDATA #IMPLIED>

<!ELEMENT DEFAULT (%all;)*>
<!ATTLIST DEFAULT

OBJ CDATA #IMPLIED
TYPE CDATA #IMPLIED
COND CDATA #IMPLIED>

<!ELEMENT ITERATE (%all;)*>
<!ATTLIST ITERATE

OBJ CDATA #IMPLIED
NAME CDATA #REQUIRED>

<!ELEMENT PLUGIN EMPTY>
<!ATTLIST PLUGIN

ID CDATA #REQUIRED
OP CDATA #REQUIRED>

<!ELEMENT ERROR (#PCDATA)>

10

